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We consider the distribution of cross sections of clusters and the density-density correlation functions
for the A +B —0 reaction. We solve the reaction-diffusion equations numerically for random initial dis-
tributions of reactants. When both reactant species have the same diffusion coefficients the distribution
of cross sections and the correlation functions scale with the diffusion length and obey superuniversal
laws (independent of dimension). For different diffusion coefficients the correlation functions still scale,
but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we
display explicitly the peculiarities of the cluster-size distribution in one dimension.

PACS number(s): 05.40.+j, 82.20.—w, 82.40.—g
I. INTRODUCTION

Since the pioneering works by Ovchinnikov and Zeldo-
vich [1] and Toussaint and Wilczek [2], much attention
has been paid to the role of fluctuation effects on
diffusion-controlled kinetics. In this context, the reaction
A +B—0 was much investigated since it leads to non-
classical kinetic laws: Its kinetic regime is fluctuation
dominated [3]; the concentration decay follows, for
stoichiometrical conditions, the form p~t‘d/4(d <4)
[3-6], whereas the classical kinetic law predicts p~¢ .

The decay of the reactants’ concentrations is thus
slowed down; this is due to the formation of clusters (spa-
tially segregated domains) of 4 and B particles during
the course of the reaction [3,7-10], and to the fact that
the reaction then takes place only at the clusters’ boun-
daries. Much interest has thus focused on the spatial
structure of the clusters and of their boundaries, and
especially on scaling [7-12].

In the present work we concentrate on a precise char-
acterization of the clusters through the determination of
the density-density correlation functions and of the distri-
butions of the clusters’ cross sections. These quantities
scale in general with respect to the diffusion length

AT (Dt)/? [7-12]. We present results for all three spatial
dimensions, both for equal and for unequal reactants’
mobilities.

Our results are obtained from a usual, approximate
system of reaction-diffusion equations for the local parti-
cles’ densities. This approach allows effective numerical
schemes and analytical insights. We are aware of the lim-
itations of the approach, and this issue will be explicitly
discussed when appropriate. Also see Ref. [13] for an in-
depth analysis of this topic, and for a comparison of
reaction-diffusion and of direct simulation results.

II. MODEL EQUATIONS
AND NUMERICAL PROCEDURE

We model the reaction kinetics in terms of the usual
reaction-diffusion equations (see, e.g., Ref. [9]) for the lo-
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cal densities p 4 p:

apA(r)t)

TZDAAPA(r’t)_—kPA(I',I)pB(r,t) 1)
and

dpp(r,t)

—p%—t———zDBAPB(r,t)—pA(r,t)pB(r,t) , 2

Here k is a time-independent rate coefficient, and D , and
Dy are the diffusion coefficients of the reactants. We
note that the deterministic reaction-diffusion Egs. (1) and
(2) reproduce the kinetics fairly well. Quantitatively,
however, care must be exercised; see Ref. [13] for a de-
tailed discussion.

When D , =Dy holds, the system described by Eqs. (1)
and (2) can be explored to a large extent analytically.
This is due to the prevailing high symmetry of the prob-
lem. For D Dy we obtain most of the results numeri-
cally.

We solve the coupled partial differential equations
(PDE’s), Egs. (1) and (2), by using a standard discrete
scheme with a centered form for the Laplacian operator
with periodic boundary conditions and a forward
difference in time (see e.g., [14]). In higher dimensions
the handling of the numerical code is largely improved by
vectorizing the corresponding lattices into a one-
dimensional (1D) array. The initial particle distribution
is taken to be Poissonian, with equal mean for both
species: p ,(t=0)=pg(t =0)=1.0. The situation is
stoichiometric, and thus (p ,(r,2))=p (t)=pg(t)
=(pp(r,t)), where the average is taken over all sites r.
In the following we set p(¢)=p ,(t)=pp(t). We take sim-
ple cubic lattices of sidelength L=10000 in d=1,
L=150ind =2, and L =50 in d =3. We discretize time
and space in increments of Ar=0.01 and Ax=1. This
choice guarantees that the scheme is numerically stable
and convergent for the values of p, k, and D, 5 used
here. We take care to avoid finite-size effects by never
letting the linear mean cluster size exceed 0.2 L. Then k
and D have to be chosen judiciously in order to detect
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clustering within reasonable computer times. In all what
follows we took k=10 and fixed the value of
D=(D,+Dg)/2 to D=1 for d =1, D=0.1 for d =2,
and D=0.01 for d=3. The individual diffusion
coefficients were varied, and included the analytically
tractable case D, =Dy as well as the extreme case
Dp=0. All calculations were performed on the CRAY
Y-MP/232 of Centre de Supercomputacié de Catacunya.

III. DECAY PATTERNS

For the sake of completeness, in Fig. 1 we present p(t)
for several (D ,,Dp) values for d =1, 2, and 3. The re-
sults are obtained from ten different realizations of the in-
itial conditions, and are plotted in double-logarithmic
scales. In Fig. 1 one recognizes readily the asymptotic
kinetics, p~t7d/4(d <4). We obtain this regime, regard-
less of the specific Dy /D 4 ratio, in all three dimensions.
This reproduces the findings of Refs. [4,13,15]. The
asymptotic domain is reached earlier when one of the
reactive species becomes less mobile, i.e., when D , and
Dy differ very much. This is not all surprising, since in
the context of diffusion-limited reactions, clusters are the
signature of a poor mixing efficiency.

IV. SPATIAL CORRELATIONS
AND CLUSTER STATISTICS

Here we analyze the clusters emerging during the reac-
tion in terms of correlation functions and cluster cross-
section distributions. A standard way is to use density-
density correlation functions. For particles of the same
kind we have

(p4(r)p 4(r+1'))

C, 4(r)= (3)
a4 (p A (r) )2
and similarly for Cgp(r’). For particles of different kinds
we have
1
log;o(p)
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FIG. 1. Particle densities as a function of time for different

dimensions and different Dy /D , ratios: O (dotted lines), %

(dashed lines), and 1 (solid lines). Note the double logarithmic
scales. See text for details.
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_ (PA(r)pB(r+rl))
(pa(r)){pp(r))

Furthermore, clusters are easily defined in terms of the
densities of the particles. For this, consider the function
y(r,t)=p 4(r,t)—pp(r,t), which vanishes at the boun-
daries of the clusters. Hence it is sufficient to determine
the zeros of y(r,t) in order to have the cluster structure;
e.g., for d#1 we obtain the distribution of cross sections
from the zeros of y(r,t) along arbitrary straight lines
drawn through the system. In d =1 we take 100 realiza-
tions of initial particle distributions. In d =2 and 3 we
use some 50 realizations. For each realization and at
each needed time we determine the zeros of y(r,z) along
50 random straight lines drawn parallel to the coordinate
axis.

We now turn to the presentation of our results, and
consider the cases D ;, =Dy and D ,7Dj separately.

C (1) 4)

A. Case D , =Dy

We start in Fig. 2 by presenting the correlation func-
tions C,,(r) and C ,5(r). The results are computed at
different times, and averaged over 100 different initial dis-
tributions. The plots are given as a function of the scal-
ing variable r/(Dt)!"/2. Note that results for different
times and different dimensions fall on the same (master)
curve, an indication of superuniversal behavior. We
show, following Ref. [15], that the reason for this is the
fact that D, =Dy, which renders y(r,¢z) Gaussian in
space. From Egs. (1) and (2) it follows that for
D =Dy =D y(r,t) obeys the exact diffusion equation

dy(r,t)
at

Note that for D ,#Djy Eq. (5) does not hold; it is re-
placed by a nonlinear diffusion equation; see Ref. [13].
The formal solution of Eq. (5) reads

=DAy(r,t) . (5)
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FIG. 2. Density-density correlation functions C,, and Cpgp
for D , =Dy, plotted as a function of r/(Dt)!/2. The full lines
are the analytical Egs. (15) and (16). Note the dimension in-
dependence (superuniversality) of the results.



yn=[" y(@,00G(r—r,0)dt , )

where G(r,t)=(4wDt)”%/? exp(—r?/4Dt) is the Green’s
function of Eq. (5). From Eq. (6) it follows that y(r,t) is
a weighted sum of the initial y(r,0) values, which are un-
correlated. Hence y(r,t) is a Gaussian random process
in space. This process is fully characterized by its mean
(which in our case vanishes) and its two-point correlation
function R,(x,X,). The correlation function is

R(xpx)= [ [G(x—x,)G(x,~x",1)
Xe(x',x"")dx'dx" , (7)

where ¢(X,y) is the correlation function of the y for # =0,
Ref. [15]:

(8)
The evaluation of Eq. (7), together with Eq. (8) then gives
R,(r)=2p(0)(87wDt)”*/? exp(—r%/8Dt) , 9)

c(x,y)=(y(x,0)y(y,0)) =2p(0)8(x—y) .

with 7 =|x; —x,].

In the diffusion-limited case, for k— oo, the cluster
boundaries are very narrow. Evidently, to a very good
approximation one then has:

pA(X,1)=y(x,0)0(y(x,t)) (10)
and
pp(x,1)=—y(x,0)0(—y(x,1)), (11)

where O(x) is the Heaviside theta function. From these
expressions the correlation functions Egs. (3) and (4) fol-
low [16]:

(p4(x,t)px(x+r,1))

= [ 7 vir®GEr )Py ysndydy, . (12)
In Eq. (12) the sign is positive for X = 4 and negative for
X =B. Moreover,

P(Y1Y2T)
_ritriz2rvag

= ———exp (13)
27R,(0)V' 1—g? 2R,(0)(1—g?)
is the two-point joint probability density for y, with
g(r,t)=R,(r)/R,(0)=exp(—r1?/8Dt) . (14)

The evaluation of the integrals in Eq. (12) now readily
gives

(“2 __#2 )1/2
P(£|0)=—; - 234 3/2 2 H342 1,2 arctan-—;
T [1—g%{)] (H33—p34) (u3;

written in terms of the functions
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Cya=(1—g*)P3"+g¥(1—gH'"?
—g arctan Ll_—gﬂ + g (15)
and
Cp=(1—g*)*"*+g*1—g»)'"?
—g arctan Ll——gz)]_/i’ . (16)

The analytical expressions Eqgs. (15) and (16) are also plot-
ted in Fig. 2. The agreement is very good, especially
when realizing that the analytical results hold in the
k — o limit. We note that Egs. (15) and (16) were also
checked in 1D with the help of direct simulations, in
which the 4 and B particles perform random walks and
react on contact; the procedure is identical to the one re-
ported in Ref. [17] for interacting particles.

We turn now to the cross sections of clusters. The
cross sections are given by the segments of straight lines
inside cluster boundaries. We denote by p(s,?) the distri-
bution of such cross sections at time ¢. Note that in 1D
this distribution coincides with the cluster size distribu-
tion. It was obtained in Ref. [18] for a layered system, but
as we show in the following, the result is valid in general,
provided that D , =Dy.

For d =2 and 3 we have drawn lines parallel to the
coordinate axes. Evidently, the problem considered here
is isotropic. Theoretically, the difference variable y(x,?)
considered as a function of the coordinate along this line
is a one-dimensional Gaussian random process. The clus-
ter boundaries then correspond to simple zeros of the
Gaussian process, whose statistics are well known and
can be expressed through the joint probability distribu-
tion of y(x,t) and its spatial derivatives. The calcula-
tions are given explicitly in Ref. [18]. Here we summa-
rize the results.

The cluster cross-section distribution p(s,?) can be ex-
pressed in terms of a function g(x,?), Eq. (14), and there-
fore depends on cross-section length s and time ¢ only
through a scaling variable £ =s /(8Dt)!/2.

The scaled distribution density p(§) [defined as
p(s,t)(Dt)}"?] can be obtained from the conditional prob-
ability P(£]0) to find a cluster boundary at &, provided
there is one at 0. The relation is of Ornstein-Zernike

type:
PEI0)=p(&)+ [ p(£)P(E—¢l0)dE .

Equation (17) can be readily evaluated numerically.
P(£|0) is given by [18]

(17)

H3q

(18)
_“54)1/2
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FIG. 3. Cross-section length distributions for D =Dy as a
function of £=x /(8Dt)!”2. The solid line represents the analyti-
cal results, Egs. (16)-(19). Note the superuniversality of the
rescaled distribution.

p33=g"(0)[1—g*&)]+g"(&) (19)
and
Uaa=g"(O[1—gHE)]+g"X&)g(&) , (20)

with g(&)=exp( —¢&?), Eq. (14).

Results from our numerical simulations together with
the analytical scaling curve are plotted in Fig. 3. Note
that the cross-section distributions obtained here for
d=2 and 3 mimic the behavior found in 1D; see also
simulations of Ref. [12]: p(&) increases linearly for small
¢ and decays exponentially for large &.

B. Case D ,+#Dp

Without loss of generality we take D , > Dy. Figure 4
shows in scaling form the correlation function in d =2
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FIG. 4. Density-density correlation functions as a function of
r/(Dt)'/? for Dy=0ind =2.
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for Dy =0. For 0<Dy <D, the results are qualitatively
similar to Dz =0, apart from the fact that Cpy stays finite
at »r =0. We summarize our findings as follows:

(i) All correlations functions scale with #!/2,

(i) C 44 and Cgp depend strongly on D, and Dy. For
Dy =0, Cpp is very large for small A; furthermore, for
small A C, , is smaller than Czp. This is a reflection of
the fact that now large (and sparsely populated) A
domains are randomly “drilled” by small (but densely
populated) B domains; the later retain their initial, Pois-
son distribution.

(iii) We were not able to find any universal scaling for
the correlation functions. Their form depends on details,
such as the particular D ,,Dp values and on the dimen-
sion.

Now we turn to the distribution of cluster cross sec-
tions for D 4 > Dy. The results for Dy 70 are qualitative-
ly similar to those for D , =Dgy: both p ,(s,t) and py(s,?)
scale with {=s/(8Dt )1/2 but now show different forms,
which depend on D, and Dy. On the other hand, the
results for Dy =0 are very special.

In Fig. 5(a) we present for Dy =0 the cross-section dis-
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FIG. 5. (a) Cross-section distributions for A clusters in d =2
for Dg=0. (b) The same as in (a), now in d =1. Note that at
small distances the functions do not scale.
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FIG. 6. The first three reduced moments (s’ (¢))!/" in d =2.
The solid lines correspond to D , =Dy, the broken ones to the
case Dy =0.

tribution for the A species in d =2, and in Fig. 5(b) that
in d =1. For the sake of easy comparison to Fig. 3, we
rescaled the results as a function of {. The situation in
d =3 is qualitatively similar to the d =2 case, and we re-
frain from presenting it here.

In view of the results of Figs. 5 for Dy =0, scaling is
less conclusive than for D ,=Djg. The distribution
P 4(s,t) seems to scale for large, but not for small, {. To
gain a better understanding of the scaling properties of
the cross-section distributions, we now focus on the re-
duced moments (s”(¢))!/". If all moments obey the usu-
al diffusive pattern, one finds {s"(¢))!/"~¢'/2 for all n.
In Fig. 6 we present the first three moments (n =1, 2,
and 3) for d =2 and in Fig. 7 those for d =1. The results
were obtained from 50 different initial realizations in
d=2 and 3. In d =1 we again take 100 realizations
directly.

For D , =Dy all three moments scale with ¢!/? both in
d =1 and in d =2. For Dgz=0 our conclusions are as fol-
lows.

(i) For d =2 scaling practically obeys %, with a being
the same for n =1, 2, and 3, and being only slightly
different from . The difference may even be due to
finite-size effects or to higher-order corrections to scaling.
The same holds for d =3.

(ii) In d =1 the situation is singular. We now have
(Sf,(t))l/"~ta", where the exponents «, increase with
n, possibly tending to ; this may indicate that only the
largest clusters grow diffusively. This finding, and the
fact that Czpz seems to depend little on time, contrasts
with the result of Ref. [12], which reports scaling with
(Dt )1/2.

A careful analysis shows the reason for this peculiar
behavior in d =1. In a continuous picture an A cluster
can either coalesce with a neighboring one if the B wall
between them is thin enough to be eaten away or it per-
sists indefinitely, if its neighboring B walls are very thick.
In the last case the particle concentration inside the A

3171

2.5+
Jogro(<sam)"™) ,

2.0 4

3.5
log;(t)

FIG. 7. Same as in Fig. 6, now in d =1. Note the lack of
scaling for Dz =0.

cluster decreases with time but does not reach zero at a
finite time. These small clusters form the nonscaling
small-size background seen in Fig. 5(b). Conversely, in a
discrete particle picture, small A4 clusters disappear:
When all the A particles between two B walls have react-
ed, the A cluster ceases to exist. The neighboring B clus-
ters coalesce, a mechanism which gives rise to B-cluster
growth and to scaling behavior for both p ,(s,¢) and
pg(s,t), as also found in Ref. [12].

Note that small A clusters with exponentially low con-
centrations can influence neither the kinetic behavior nor
the density-density correlation functions; they show up,
however, in considerations of the cluster-size distribu-
tions, where they significantly change the normalization
constant.

This finding shows that the geometrical properties of
clusters may depend sensitively on the underlying micro-
scopic model; thus continuum models in d =1 give rise to
nonuniversal behavior. This nonuniversality may be ei-
ther an artifact (if it is only a mesoscopic approximation
for a discrete system) or a physical effect, say in a system
with initial macroscopic inhomogeneities (e.g., a layered
system; see Ref. [19]).

V. CONCLUSIONS

Here we analyzed statistical properties of clusters
formed during the 4 +B —0 reaction. The clusters are
characterized by the density-density correlation functions
and by their cross-section distributions. We have found
that, for equal diffusion coefficients D, ,=Djp, the
behavior of both quantities is superuniversal (independent
of dimension); it is governed only by the diffusion length
A~(Dt)'”2, When D, #Djp the correlation functions
scale, but their explicit forms depends on d and on D ,
and Dy. For Dy =0 and d =1 no scaling is evident in the
cross-section distribution.
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